42 research outputs found

    Resting state functional network disruptions in a kainic acid model of temporal lobe epilepsy.

    Get PDF
    We studied the graph topological properties of brain networks derived from resting-state functional magnetic resonance imaging in a kainic acid induced model of temporal lobe epilepsy (TLE) in rats. Functional connectivity was determined by temporal correlation of the resting-state Blood Oxygen Level Dependent (BOLD) signals between two brain regions during 1.5% and 2% isoflurane, and analyzed as networks in epileptic and control rats. Graph theoretical analysis revealed a significant increase in functional connectivity between brain areas in epileptic than control rats, and the connected brain areas could be categorized as a limbic network and a default mode network (DMN). The limbic network includes the hippocampus, amygdala, piriform cortex, nucleus accumbens, and mediodorsal thalamus, whereas DMN involves the medial prefrontal cortex, anterior and posterior cingulate cortex, auditory and temporal association cortex, and posterior parietal cortex. The TLE model manifested a higher clustering coefficient, increased global and local efficiency, and increased small-worldness as compared to controls, despite having a similar characteristic path length. These results suggest extensive disruptions in the functional brain networks, which may be the basis of altered cognitive, emotional and psychiatric symptoms in TLE

    Risk factors for comorbid epilepsy in patients with psychogenic non-epileptic seizures. Dataset of a large cohort study

    Get PDF
    Psychogenic non-epileptic seizures (PNES) are the main differential diagnosis of pharmacorresistant epilepsy. Achieving the certainty in the diagnosis of PNES may be challenging, especially in the 10-22% of cases in which PNES and epilepsy co-exist. This difficulty hampers the management of these patients. Unfortunately, published series with this combined pathology are scarce and small in size. This article presents the dataset of our article “Factors associated with comorbid epilepsy in patients with psychogenic non-epileptic seizures: a large cohort study” (Massot-Tarrús et al. 2022). It is composed by a detailed demographic and clinical data of 271 consecutive patients diagnosed with PNES in our epilepsy monitoring unit (EMU) between May 2001 and February 2011, and followed until September 2016. Based on the clinical, neuroimaging and vEEG findings, 47 of these patients were diagnosed with definite comorbid epilepsy, and 30 with possible or probable comorbid epilepsy. All data was collected retrospectively from chart review. The cohort is depicted by means of demographic variables; age at PNES onset; years with PNES; frequency of PNES; duration of longest PNES seizure; self-reported history of minor head trauma (not associated with an increased risk of epilepsy) immediately preceding the first PNES; history of substance abuse; past or present history of active suicidal ideation; neuropsychological evaluation with the Minnesota Multiphasic Personality Inventory test; number and nature of risk factors for epilepsy; co-morbid degenerative brain disease or other neurological or psychiatric medical conditions; semiology of the seizures and triggers; EEG findings; type of epilepsy; number of past EMU admissions and epilepsy clinic visits and re-referrals; number of Anti-Seizure Medications (ASM) at EMU admission and discharge; and the outcome of the spells and ASM after the EMU discharge. Those ASM prescribed for reasons other than the treatment of the seizures (e.g., psychiatric disorders, migraine, pain syndromes, etc.) were not counted. The presented baseline data can be used in studies evaluating the characteristics of patients with PNES and comorbid epilepsy, and in the creation of algorithms to identify them. It could facilitate the prioritization of this subgroup of patients for prolonged video-EEG monitorization to confirm the co-existence of both types of seizures and treat them accordingly

    Stereo-Encephalographic Presurgical Evaluation of Temporal Lobe Epilepsy: An Evolving Science

    Get PDF
    Drug-resistant epilepsy is present in nearly 30% of patients. Resection of the epileptogenic zone has been found to be the most effective in achieving seizure freedom. The study of temporal lobe epilepsy for surgical treatment is extensive and complex. It involves a multidisciplinary team in decision-making with initial non-invasive studies (Phase I), providing 70% of the required information to elaborate a hypothesis and treatment plans. Select cases present more complexity involving bilateral clinical or electrographic manifestations, have contradicting information, or may involve deeper structures as a part of the epileptogenic zone. These cases are discussed by a multidisciplinary team of experts with a hypothesis for invasive methods of study. Subdural electrodes were once the mainstay of invasive presurgical evaluation and in later years most Comprehensive Epilepsy Centers have shifted to intracranial recordings. The intracranial recording follows original concepts since its development by Bancaud and Talairach, but great advances have been made in the field. Stereo-electroencephalography is a growing field of study, treatment, and establishment of seizure pattern complexities. In this comprehensive review, we explore the indications, usefulness, discoveries in interictal and ictal findings, pitfalls, and advances in the science of presurgical stereo-encephalography for temporal lobe epilepsy

    The role of the temporal pole in temporal lobe epilepsy: A diffusion kurtosis imaging study

    Get PDF
    This study aimed to evaluate the use of diffusion kurtosis imaging (DKI) to detect microstructural abnormalities within the temporal pole (TP) and its temporopolar cortex in temporal lobe epilepsy (TLE) patients. DKI quantitative maps were obtained from fourteen lesional TLE and ten non-lesional TLE patients, along with twenty-three healthy controls. Data collected included mean (MK); radial (RK) and axial kurtosis (AK); mean diffusivity (MD) and axonal water fraction (AWF). Automated fiber quantification (AFQ) was used to quantify DKI measurements along the inferior longitudinal (ILF) and uncinate fasciculus (Unc). ILF and Unc tract profiles were compared between groups and tested for correlation with disease duration. To characterize temporopolar cortex microstructure, DKI maps were sampled at varying depths from superficial white matter (WM) towards the pial surface. Patients were separated according to the temporal lobe ipsilateral to seizure onset and their AFQ results were used as input for statistical analyses. Significant differences were observed between lesional TLE and controls, towards the most temporopolar segment of ILF and Unc proximal to the TP within the ipsilateral temporal lobe in left TLE patients for MK, RK, AWF and MD. No significant changes were observed with DKI maps in the non-lesional TLE group. DKI measurements correlated with disease duration, mostly towards the temporopolar segments of the WM bundles. Stronger differences in MK, RK and AWF within the temporopolar cortex were observed in the lesional TLE and noticeable differences (except for MD) in non-lesional TLE groups compared to controls. This study demonstrates that DKI has potential to detect subtle microstructural alterations within the temporopolar segments of the ILF and Unc and the connected temporopolar cortex in TLE patients including non-lesional TLE subjects. This could aid our understanding of the extrahippocampal areas, more specifically the temporal pole role in seizure generation in TLE and might inform surgical planning, leading to better seizure outcomes

    Waveform detection by deep learning reveals multi-area spindles that are selectively modulated by memory load

    Get PDF
    Sleep is generally considered to be a state of large-scale synchrony across thalamus and neocortex; however, recent work has challenged this idea by reporting isolated sleep rhythms such as slow oscillations and spindles. What is the spatial scale of sleep rhythms? To answer this question, we adapted deep learning algorithms initially developed for detecting earthquakes and gravitational waves in high-noise settings for analysis of neural recordings in sleep. We then studied sleep spindles in non-human primate electrocorticography (ECoG), human electroencephalogram (EEG), and clinical intracranial electroencephalogram (iEEG) recordings in the human. Within each recording type, we find widespread spindles occur much more frequently than previously reported. We then analyzed the spatiotemporal patterns of these large-scale, multi-area spindles and, in the EEG recordings, how spindle patterns change following a visual memory task. Our results reveal a potential role for widespread, multi-area spindles in consolidation of memories in networks widely distributed across primate cortex

    Magnetic resonance imaging and histology correlation in the neocortex in temporal lobe epilepsy.

    Get PDF
    OBJECTIVE: To investigate the histopathological correlates of quantitative relaxometry and diffusion tensor imaging (DTI) and to determine their efficacy in epileptogenic lesion detection for preoperative evaluation of focal epilepsy. METHODS: We correlated quantitative relaxometry and DTI with histological features of neuronal density and morphology in 55 regions of the temporal lobe neocortex, selected from 13 patients who underwent epilepsy surgery. We made use of a validated nonrigid image registration protocol to obtain accurate correspondences between in vivo magnetic resonance imaging and histology images. RESULTS: We found T1 to be a predictor of neuronal density in the neocortical gray matter (GM) using linear mixed effects models with random effects for subjects. Fractional anisotropy (FA) was a predictor of neuronal density of large-caliber neurons only (pyramidal cells, layers 3 and 5). Comparing multivariate to univariate mixed effects models with nested variables demonstrated that employing T1 and FA together provided a significantly better fit than T1 or FA alone in predicting density of large-caliber neurons. Correlations with clinical variables revealed significant positive correlations between neuronal density and age (rs  = 0.726, pfwe  = 0.021). This study is the first to relate in vivo T1 and FA values to the proportion of neurons in GM. INTERPRETATION: Our results suggest that quantitative T1 mapping and DTI may have a role in preoperative evaluation of focal epilepsy and can be extended to identify GM pathology in a variety of neurological disorders

    Usage of SWI (susceptibility weighted imaging) acquired at 7T for qualitative evaluation of temporal lobe epilepsy patients with histopathological and clinical correlation: An initial pilot study.

    Get PDF
    OBJECTIVES: Ultra high field MRI at 7T is able to provide much improved spatial and contrast resolution which may aid in the diagnosis of hippocampal abnormalities. This paper presents a preliminary experience on qualitative evaluation of 7T MRI in temporal lobe epilepsy patients with a focus on comparison to histopathology. METHODS: 7T ultra high field MRI data, using T1-weighted, T2*-weighted and susceptibility-weighted images (SWI), were acquired for 13 patients with drug resistant temporal lobe epilepsy (TLE) during evaluation for potential epilepsy surgery. Qualitative evaluation of the imaging data for scan quality and presence of hippocampal and temporal lobe abnormalities were scored while blinded to the clinical data. Correlation of imaging findings with the clinical data was performed. Blinded evaluation of 1.5T scans was also performed. RESULTS: On the 7T MRI findings, eight out of 13 cases demonstrated concordance with the clinically suspected TLE. Among these concordant cases, three exhibited supportive abnormal 7T MRI findings which were not detected by the clinical 1.5T MRI. Of the ten cases that progressed to epilepsy surgery, seven showed concordance between 7T MRI findings and histopathology; of these, four cases had hippocampal sclerosis. SWI had the highest concordance with the clinical and histopathological findings. Similar clinical and histopathological concordance was found with 1.5T MRI. CONCLUSIONS: There was moderate and high concordance between the 7T imaging findings with the clinical data and histopathology respectively

    Investigation of hippocampal substructures in focal temporal lobe epilepsy with and without hippocampal sclerosis at 7T.

    Get PDF
    PURPOSE: To provide a more detailed investigation of hippocampal subfields using 7T magnetic resonance imaging (MRI) for the identification of hippocampal sclerosis in temporal lobe epilepsy (TLE). MATERIALS AND METHODS: Patients (n = 13) with drug-resistant TLE previously identified by conventional imaging as having hippocampal sclerosis (HS) or not (nine without HS, four HS) and 20 age-matched healthy controls were scanned and compared using a 7T MRI protocol. Using a manual segmentation scheme to delineate hippocampal subfields, subfield-specific volume changes and apparent transverse relaxation rate ( R2*) were studied between the two groups. In addition, qualitative assessment at 7T and clinical outcomes were correlated with measured subfield changes. RESULTS: Volumetry of the hippocampus at 7T in HS patients revealed significant ipsilateral subfield atrophy in CA1 (P = 0.001) and CA4+DG (P \u3c 0.001). Volumetry also uncovered subfield atrophy in 33% of patients without HS, which had not been detected using conventional imaging. R2* was significantly lower in the CA4+DG subfields (P = 0.001) and the whole hippocampus (P = 0.029) of HS patients compared to controls but not significantly lower than the group without HS (P = 0.077, P = 0.109). No correlation was found between quantitative volumetry and qualitative assessment as well as surgical outcomes (Sub, P = 0.495, P = 0.567, P = 0.528; CA1, P = 0.104 ± 0.171, P = 0.273, P = 0.554; CA2+CA3, P = 0.517, P = 0.952, P = 0.130 ± 0.256; CA4+DG, P = 0.052 ± 0.173, P = 0.212, P = 0.124 ± 0.204; WholeHipp, P = 0.187, P = 0.132 ± 0.197, P = 0.628). CONCLUSION: These preliminary findings indicate that hippocampal subfield volumetry assessed at 7T is capable of identifying characteristic patterns of hippocampal atrophy in HS patients; however, difficulty remains in using imaging to identify hippocampal pathologies in cases without HS. LEVEL OF EVIDENCE: 2 J. MAGN. RESON. IMAGING 2017;45:1359-1370

    Identification of a Novel Synaptic Protein, TMTC3, Involved in Periventricular Nodular Heterotopia with Intellectual Disability and Epilepsy

    Get PDF
    Defects in neuronal migration cause brain malformations, which are associated with intellectual disability (ID) and epilepsy. Using exome sequencing, we identified compound heterozygous variants (p.Arg71His and p. Leu729ThrfsTer6) in TMTC3, encoding transmembrane and tetratricopeptide repeat containing 3, in four siblings with nocturnal seizures and ID. Three of the four siblings have periventricular nodular heterotopia (PVNH), a common brain malformation caused by failure of neurons to migrate from the ventricular zone to the cortex. Expression analysis using patient-derived cells confirmed reduced TMTC3 transcript levels and loss of the TMTC3 protein compared to parental and control cells. As TMTC3 function is currently unexplored in the brain, we gathered support for a neurobiological role for TMTC3 by generating flies with post-mitotic neuron-specific knockdown of the highly conserved Drosophila melanogaster TMTC3 ortholog, CG4050/tmtc3. Neuron-specific knockdown of tmtc3 in flies resulted in increased susceptibility to induced seizures. Importantly, this phenotype was rescued by neuron-specific expression of human TMTC3, suggesting a role for TMTC3 in seizure biology. In addition, we observed co-localization of TMTC3 in the rat brain with vesicular GABA transporter (VGAT), a presynaptic marker for inhibitory synapses. TMTC3 is localized at VGAT positive pre-synaptic terminals and boutons in the rat hypothalamus and piriform cortex, suggesting a role for TMTC3 in the regulation of GABAergic inhibitory synapses. TMTC3 did not co-localize with Vglut2, a presynaptic marker for excitatory neurons. Our data identified TMTC3 as a synaptic protein that is involved in PVNH with ID and epilepsy, in addition to its previously described association with cobblestone lissencephaly

    Stuttered swallowing: Electric stimulation of the right insula interferes with water swallowing. A case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Various functional resonance imaging, magnetoencephalographic and lesion studies suggest the involvement of the insular cortex in the control of swallowing. However, the exact location of insular activation during swallowing and its functional significance remain unclear.</p> <p>Case presentation</p> <p>Invasive electroencephalographic monitoring was performed in a 24-year-old man with medically intractable stereotyped nocturnal hypermotor seizures due to a ganglioglioma. During stimulation of the right inferior posterior insular cortex with depth electrodes the patient spontaneously reported a perception of a "stutter in swallowing". Stimulation of the inferior posterior insular cortex at highest intensity (4 mA) was also associated with irregular and delayed swallows. Swallowing was not impaired during stimulation of the superior posterior insular cortex, regardless of stimulation intensity.</p> <p>Conclusions</p> <p>These results indicate that the right inferior posterior insular cortex is involved in the neural circuitry underlying the control of swallowing.</p
    corecore